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The nonlinear inertial effect in transfer theory is investigated when the localized 
structure is unchanged in spatial dimension in its evolution in a nonlinear medium 
with volume absorption. 

A broad class of diffusional transfer processes (heat, conduction, diffusion, filtration, 
etc~) is described by quasilinear parabolic equations of the form 

t t t=div (k (u)  grad u) + f (u, Du, t, x), t > O ,  xCR~,  n =  1, 2, and3. (1) 

In recent years fundamental results have been obtained in the theory of nonlinear process- 
es of diffusional type, elucidating a series of features of such processes taking account of 
nonlinearity. Nonlinear properties of the medium and, in particular, the dependence of the 
transfer coefficient k on the transfer potential qualitatively change the evolution of struc- 
tures in such media in comparison with classical diffusional processes described by linear pa- 
rabolic equations. These features appear in investigating the propagation of perturbations 
in nonlinear media, when the initial distribution uo(x) = u(x, 0) describing the initial pro- 
file of the structure in the corresponding problems is specified in the form of finite func- 
tions with a compact carrier. In this case such nonlinear effects as a finite velocity of 
propagation and spatial localization of the perturbation -- inertial effects with no analog in 
linear theory -- are observed [1-9]. 

Inertial properties in the diffusional propagation of a perturbation in nonlinear media 
appear most clearly in the form of the effect of self-insulation of evolving structures. In 
the presence of such an effect, the perturbation front remains motionless for a time interval 
of arbitrary length and the spatial region of the perturbation does not change over time. In 
other words, in such conditions of evolution of a localized structure, internal mechanisms of 
the nonlinear transfer process insulate it from the surrounding space~ suppressing the tenden- 
cy of the structure to broaden on account of the diffusional flux. 

From a mathematical viewpoint, the self-insulation of structures means that in equations 
of the form in Eq. (i) there must exist finite solutions with a compact carrier which does not 
change in size over time, i.e., solutions for which supp u(x, t) = supp uo(x) ~t ~ 0. 

As an example of the realization of such unusual conditions of the evolution of a local- 
ized structure in a nonlinear medium with absorption, consider the process described in Eq~ 

(I) in which k(u) = kou ~ (ko = const>0) and the junior term take~ the form f = -fot~u ~ (fo = 
const > 0). 

In this case, after trivial ~sale changes, Eq. (i) may be written in the form 

u t = div ( ~  grad u) - -  ~ (t @ ~}~uv(x, t), E~X (0, -~oo). (2) 

Here ~ = const>0 is the absorption coefficient, while the parameter to > 0 (the time shift) 
is only introduced so as to eliminate the singularity in the junior term of the equation as 
t + 0 when a < 0. 

The accurate particular solution of the quasilinear parabolic Eq. (2) is found in the 
case when ~ = --2, ~ = 1 -- o (0 < o < i, 0 < ~ < I). It is assumed that the structure has sym- 
metry and the distribution of the transfer potential at any time depends solely on one radial 

spatial variable r=Ixl, rER$ =R~n{r~0} . Note that the physical formulation of the problem 
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associated with the description of the transfer process requires that the desired nonnegative 

solution (in the general case, generalized [7]) satisfy the continuity conditions for the po- 
tential u and the flux u ogradu. 

The particular solution of Eq. (2) for this case will be sought formally as a function 
with separable variables 

u (x, t) ~ -  u (r, t) = v (r) .  T (0, 

the time factor being chosen in the special form T ( t ) = ( t ~  to) 

(3) 

Then, substitution of Eq. (3) into Eq. (2) gives the following nonlinear equation for 

v(r): 

1 d (r,>_lvS d r ) .  o_lv._lTvl-S=O" (4) 
r n-1 dr dr , 

It may be established by direct verification that the generalized solution of this equa- 

tion satisfying the condition vCC~(R!~), which ensures satisfaction of the above-noted poten- 

tial and flux continuity equations, is the following finite function with a compact carrier: 

I 

( r ~2]-~-, O~r< ro ,  
v ( r ) =  A 1 - -  ~-77-o ] J " ,' (5) 

0, r ~ ro, 

where 
I I A=[+o(2+no)lT]-8-; ro=(2+n~)]7 -~-. 

(6) 

Thus, when a = --2 and ~ = 1 --o, Eq. (2) has the following generalized solution: 

u (r, t ) =  A r ~ [0, ro), 
t -Fro 

O, r~R~\[O, to) , 

(7) 

where A and ro are defined by Eq. (6). 

The solution in Eq. (7) with a time-varying carrier describes the evolution of a struc- 
ture localized in a spherical region of radius ro which is self-insulated throughout the en- 
tire process. At boundary points of the carrier of the solution r = ro, where the function 
u appears against a zero unperturbed background, the flux is zero at any moment of time. 

It is characteristic that the dimension of the localized structure ro at which the self- 
insulation effect is observed is not arbitrary, but uniquely determined by the values of the 

parameters in Eq. (2), in accordance with Eq. (6). 

The solution in Eq. (7) shows that nonpropagation of the perturbation front (r = ro) 
leads to an evolution of the structure of unique form, when the broadening of the structure 
over time that is customary for diffusional processes is not observed on account of volume ab- 
sorption. In the present case this effect is due to the influence of the junior term in Eq. 
(2), since when ~ = 0 no structure of the form in Eq. (7) exists 

Note, in conclusion, that this effect of the self-insulation of localized structures 
whose evolution is described by equations of the form in Eq. (i) may also be observed in the 
case when k = ko = const>0, i.e., in a medium with a constant transfer coefficient [i0, ii]. 
In this case, this effect is due exclusively to nonlinearity of the junior term in the equa- 

tion. 

A qualitatively similar effect may also be observed in a nonlinear medium with k(u) = 
kou '~, when no volume sources are present (f~0) or when "active" volume processes occur in it, 
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i.e., when the junior term in Eq. (i) is nonnegative and depends on u [12, 13]. However, in 
contrast to the above case of a nonlinear medium with absorption (f < 0), when the self-insu- 

lation effect is observed for any t6[0, +co) , in the case when f ~ 0 or f ~ 0 the self-insulated 

structure is always metastably localized, i.e., may only exist for some finite time interval, 
after which perturbation front begins to move. 
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